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Abstract—We consider schemes for decentralized cross-
layer optimization of multichannel random access by ex-
ploiting local channel state and traffic information. In the
network we are considering, users are not necessarily within
the transmission ranges of all others; therefore, when a user
is transmitting, it may only interfere with some users, which
is different from most existing channel aware Aloha schemes.
Besides, we also consider complicated traffic distribution,
e.g. each user may choose to send packets to or receive
packets from different users simultaneously. We develop
decentralized optimization for multichannel random access
(DOMRA). DOMRA consists of three steps: neighborhood
information collection, transmission control of the MAC
layer based on the instantaneous channel state information,
and power allocation for each traffic flow on each subchan-
nel. Simulation results demonstrated that DOMRA signif-
icantly outperforms existing channel aware Aloha schemes
due to its exploitation of both multiuser diversity through
cross-layer design and the inhomogeneous characteristics of
traffic spatial distribution in the network. Besides, DOMRA
performs closely to the globally optimum solution, which
requires full network knowledge to be obtained. DOMRA
can be applied to different types of wireless networks, such
as wireless sensor networks and mobile ad hoc networks, to
improve quality of service.

Index Terms—cross-layer, decentralized, random access,
multichannel, channel aware

I. INTRODUCTION

In traditional networks, especially wired networks, dif-
ferent layers are treated separately to simplify the design.
However, in wireless networks, channel states are differ-
ent for different users and change with time. Network
efficiency can be improved significantly if layer-wise
design is substituted by cross-layer design. Therefore,
cross-layer optimization is becoming a more and more
important research area in wireless communications [1]–
[3]. Much of the research in this area focuses on multiuser
wireless communication environments, where each user
is scheduled to transmit when it has favorable channel
conditions so as to obtain multiuser diversity [4].

For centralized scheduling [5]–[7], the best perfor-
mance can be obtained with the help of channel state
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information (CSI) from all active users. However, CSI
feedback consumes a large amount of resources, espe-
cially for networks with a large number of users at high
mobility. To reduce CSI feedback, decentralized cross-
layer design approaches can be considered. Opportunistic
random access schemes have been studied in [8]–[15] and
the references therein. For opportunistic random access,
each user exploits its own CSI to optimize transmis-
sion performance. In [8], each user transmits only if its
channel power gain is above a pre-determined threshold
that is chosen to maximize the probability of success-
ful transmissions. For clustered orthogonal frequency-
division multiplexing (OFDM) based wireless networks,
an opportunistic multichannel Aloha has been designed
in [9], in which a user transmits if it has at least some
subchannels with gains greater than a threshold. In [10],
some negotiations between the users and the base station
are designed prior to data transmission to allow successful
transmission of the user with best channel condition. A
channel aware multicarrier random access scheme has
been proposed in [11], where each user selects some
subchannels with the best channel power gains for data
transmission. Inspired by [8], it is proposed in [12] that
each user in a cellular network sends request packets
when the channel fading level exceeds a predetermined
threshold, after which the BS processes downlink trans-
missions. Although the thresholds in [12] are chosen
to optimize downlink throughput, the proposed scheme
actually reduces uplink request collisions, and hence also
deals with random access. In [13], based on decentralized
CSI, a general expression for the transmission probability
that may depend on the channel and the physical layer
implementation is given, and the transmission probability
is optimized to achieve maximum stable throughput in
the medium access control (MAC) layer. Through slotted
Aloha, a reservation-based MAC scheme is found in
[14] to maximize the overall throughput. The capacity of
slotted Aloha is analyzed and the optimal transmission
probabilities is obtained for multi-packet reception MAC
model [15]. All these works are for wireless networks
where users transmit to a common receiver, e.g., the base
station.

This scenarios does not fit many wireless communi-
cation environments, such as sensor networks [16], ad
hoc networks [17], or wireless mesh networks [18]. In
sensor networks [16], each user sends packets to oth-



TABLE I
NOTATIONS IN THE PAPER

K number of subchannels k subchannel index
i, j user indices (i, j)k link from Users i to j on subchannel k

(i, j) link from Users i to j V set of active users, {1, 2, ..., N}
E set of links over all subchannels, L set of links available for communication,

{(i, j)k|i, j ∈ V, i 6= j;k = 1, 2, ..., K} {(i, j)|i, j ∈ V, i 6= j, i and j can
receive packets from each other}

G directed graph denoting the Ni interfering neighbor set of i,
network, defined as (V, E ,L) {j|∀j ∈ V, s.t.(i, j) ∈ L}

Ti set of users receiving packets from i, Sj set of users sending packets to j,
{j|(i, j) ∈ L, (i, j) is backlogged } {i|(i, j) ∈ L, (i, j) is backlogged}

E statistical average Pt transmit power
Pa average power constraint Pm maximum allowed transmit power
h channel power gain f(h) probability density of h

F (h) distribution of h H(i,j)k
predetermined channel power gain
threshold of link (i, j)k

|X | number of elements in set X T throughput
pik transmission probability of User i p(i,j)k

transmission probability of link (i, j)k

on subchannel k
R(i,j)k

average data rate on link (i, j)k P(i,j)k
(h) transmit power on link (i, j)k

with channel power gain h
Pr(i,j)k

received power level of link (i, j)k Pri set of received power level of
W total system bandwidth User i, defined as

{Pr(i,j)k
|j ∈ Ti, k = 1, ..., K}

R(η) data rate function for a given η(h) received SNR given h
SNR η A∗ the optimal solution of A

No noise spectral density H set of predetermined channel
P power allocation policy, defined as power gain threshold, defined

{P(i,j)k
(h)|(i, j)k ∈ E , j ∈ Ti, as {H(i,j)k

|(i, j)k ∈ E , j ∈ Ti}
h > H(i,j)k

}. Pi is the power allocation C transmission control of the network,
policy of User i. defined as {H,P}

ers with minimized energy and only interferes with its
neighboring users. Hence, different users have different
sets of channel access competitors. Besides, many existing
policies [8]–[13] are designed such that each user has
the same transmission probability. Although this guar-
antees absolute fairness among all users, the network
performance is not optimal when the traffic flows are not
uniformly distributed or users are not necessarily within
the transmission range of the others. Based on inhomoge-
neous characteristics of channel, interference, and traffic
of different users, we propose a decentralized optimization
for multichannel random access (DOMRA) scheme. The
novel scheme consists of three steps: (1) neighborhood
information collection; (2) transmission control of the
MAC layer based on the instantaneous channel state infor-
mation; (3) power allocation of each traffic flow on each
subchannel. Simulation results show that the proposed
scheme significantly outperforms existing random access
schemes due to the exploitation of both multiuser diver-
sity through cross-layer design and the inhomogeneous
characteristics of traffic spatial distribution in the network.
Besides, DOMRA performs closely to the globally opti-
mum solution, which requires full network knowledge to
be obtained.

The rest of this paper is organized as follows. First we
introduce the physical and MAC layers of the system in

Section II. In Section III, we describe the transmission
policy and formulate the problem. Then in Section IV,
we decompose the cross-layer optimization into two sub-
problems and provide suboptimal solutions. Finally, we
demonstrate the performance improvement of the pro-
posed scheme by computer simulations in Section V and
conclude the paper in Section VI.

The notations in this paper are summarized in Table I.

II. SYSTEM DESCRIPTION

Consider multichannel wireless networks. The whole
band is divided into K subchannels. All channels between
pairs of users are assumed to be reciprocal, i.e. when no
interference exists, User A can receive signal from User
B if and only if User B can receive signal from User
A with the same channel gain. However, the interference
environments at Users A and B may be different since
they are at different locations. Each user has knowledge of
its own CSI and makes independent transmission control
decisions, including whether to transmit given the CSI,
what data rate to use and where to transmit, etc. Each user
applies the same transmission control policy. In order to
avoid onerous signalling burden, no communication pair
has instantaneous cooperation, such as exchange of CSI,
transmit power, or subchannel selections.

All users are not necessarily within the transmission
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Fig. 1. Network architecture example

ranges of the others, which means that some users may
not be able to receive packets from others due to weak
received signal power. For simplicity, we assume those
that can communicate with each other experience isotropic
channels, i.e. channel power gains of different links are
independent and identically distributed with probability
density function, f(h), and distribution function, F (h).
No capture is assumed for signal reception, i.e., the
receiver cannot receive any signal successfully if any of its
interfering neighbors, which are within the transmission
range of the receiver, is transmitting simultaneously. A
user can not transmit and receive simultaneously on the
same subchannel; however, it may transmit on a set of
subchannels and receive on a different set of subchannels
at the same time. Each user may choose to send packets
to or receive packets from different users on different
channels, and we assume that the links that carry traffic
are backlogged, i.e., they always have packets to transmit.

During transmission, each user is subject to both aver-
age and instantaneous power constraints [19]. The average
power constraint is due to heat accumulation and overall
power consumption, while the instantaneous power con-
straint comes from the limited linear range of amplifiers.
Two power allocation policies will be considered. In the
first one, called channel inversion, each user transmits
with just sufficient power to keep the received power
constant so that the signal can be reliably detected. In the
second, called adaptive modulation and power allocation,
each user can vary both the modulation and transmit
power during each transmission time slot to maximize
throughput.

III. PROBLEM FORMULATION

In this section, we describe our wireless network model,
and propose a channel aware multi-channel random access
scheme. The characteristics of the proposed scheme are
analyzed, after which a criterion for cross-layer design is
provided.

Denote the wireless network as a directed graph
G(V, E ,L), where V , E , and L are the set of active users,
the set of all links over all K subchannels, and the set of
links available for communication (for detailed definition,
please refer to Table I. We denote Ni as the interfering
neighbor set of User i. Each user may choose to send
packets to or receive packets from several users, and Ti

denotes the set of users receiving packets from i and Sj

the set of users sending packets to j.
Figure 1 shows an example topology of a wireless

network. The users are on a grid with unit spacing, and
the transmission range is

√
2. The set of links available for

communication is L = {(1, 3), (1, 2), (1, 4), (2, 3), (2, 6),
(3, 4), (3, 5), (3, 6), (4, 6), (4, 5), (5, 6), (5, 7), (5, 8),
(6, 7), (6, 8), (7, 8), (7, 9), (8, 9)}. The arrows show the
traffic flows in the network. For example, since (4, 6) ∈ L,
any transmission by Users 4 or 6 will be received by the
other though they may not have packets to send to each
other. So Users 4 and 6 constitute an interfering pair and
they interferer packet reception of each other. Observing
User 3, it is easy to see that T3 = {4, 6}, S3 = {1, 2},
while N3 = {1, 2, 4, 5, 6}.

Slotted Aloha is a typical random access scheme. In
slotted Aloha, the MAC layer makes transmission deci-
sions based on the buffer occupancy and QoS requirement,
and does not utilize the knowledge of the physical layer
at all. Hence, when the MAC decides to transmit a frame,
the channel may be in deep fade, but the physical layer
still carries out the transmission, and causes a waste of
power. On the other hand, the MAC layer may decide
not to transmit even though the channel power gain is
high, because it does not have this information from the
PHY layer; this leads to wasted opportunity. With channel
knowledge, the sender will transmit only when the channel
power gain is above a certain threshold ∗. Therefore,
we propose the following decentralized optimization for
multichannel random access (DOMRA).

∗Channel gains may be inferred either due to CSI feedback or via
channel reciprocity.
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DOMRA: User i (i ∈ V) decides to send packets to
User j on subchannel k when the following conditions
are satisfied: 1). User i has packets to send to j, j ∈
Ti; 2). on subchannel k, link (i, j) has the best channel
power gain, h(i,j)k

= maxl∈Ti
{h(i,l)k

}; 3). the channel
power gain is above a threshold, h(i,j)k

≥ H(i,j)k
, where

H(i,j)k
is predetermined for link (i, j)k. The transmission

is then optimized according to H(i,j)k
, CSI and capability

constraints.
In DOMRA, each user transmits on the link with the

best channel power gain provided that the gain is above
a predetermined threshold. Proper choice of thresholds
{H(i,j)k

|(i, j)k ∈ E} and data transmission rates of all
traffic flows, i.e. power allocation, will be determined in
the following paragraphs so that overall network perfor-
mance is optimized from certain perspectives.

As pointed out before, while many existing channel
aware schemes such as [8]–[11], assume that each user has
only one traffic flow to send and is within the transmission
range of all other users, the DOMRA will provide solu-
tions to networks in which users are not necessarily within
the transmission ranges of all other users, and each user
could send packets to or receive packets from different
users simultaneously on different subchannels.

A. MAC Layer Analysis

According to the above transmission policy and the
homogeneity assumption, the probability of a transmission
on link (i, j)k ∈ E is given by

p(i,j)k
=

1
|Ti|

(
1− F |Ti|(H(i,j)k

)
)

(1)

where |·| denotes the number of elements in the respective
set. The proof of (1) is given in Appendix I.

The probability that User i transmits on subchannel k
is

pik
=

∑

j∈Ti

p(i,j)k
=

∑

j∈Ti

1
|Ti|

(
1− F |Ti|(H(i,j)k

)
)

. (2)

Hence, the throughput on link (i, j)k is

T(i,j)k
= R(i,j)k

p(i,j)k
(1− pjk

)
∏

a∈Nj ,a6=i

(1− pak
), (3)

where R(i,j)k
is the average data rate given that the

user has decided to transmit on link (i, j)k, and de-
pends on the modulation and power allocation policy.
(1−pjk

)
∏

a∈Nj ,a6=i(1−pak
) is the probability that neither

user j nor its neighboring users except user i will transmit
on subchannel k, which means successful transmission on
link (i, j)k.

For example, in Figure 1, the transmission from User
3 to User 6 on subchannel k succeeds only when neither
User 6 nor his neighbors excluding User 3, i.e., users in
N6\{3} = {2, 4, 5, 7, 8}, transmit. Hence, the throughput
from User 3 to 6 on subchannel k is T(3,6)k

= p(3,6)k
(1−

p6k
)(1−p2k

)(1−p4k
)(1−p5k

)(1−p7k
)(1−p8k

)R(i,j)k
.

B. Physical Layer Analysis

The average transmit power on link (i, j)k is the
average of transmit power over all time slots, whether
or not transmission happens on this link. According to
the ergodicity of the channel, it is the average of transmit
power over all channel states. Hence, we have

E{P(i,j)k
} =

∫ ∞

0

Pr{H(i,j)k
= h, and User i transmits

on (i, j)k}P(i,j)k
(h)dh

=
∫ ∞

0

Pr{H(i,j)k
= h}Pr{ User i transmits

on (i, j)k|H(i,j)k
= h}P(i,j)k

(h)dh

=
∫ ∞

H(i,j)k

f(h)F |Ti|−1(h)P(i,j)k
(h)dh

=
1
|Ti|

∫ ∞

H(i,j)k

P(i,j)k
(h)dF |Ti|(h), (4)

where E{} denotes expectation, P(i,j)k
(h) is the transmit

power on link (i, j)k when the channel has power gain h
and it depends on modulation and power allocation policy.
For example, in order to achieve a constant SNR at the
receiver, P(i,j)k

(h) is allocated such that P(i,j)k
(h) = Pr

h ,
where Pr is the received power level satisfying the SNR
requirement. According to the average power constraint,
we have

∑

j∈Ti,k=1,...,K

E{P(i,j)k
} ≤ Pa, ∀i, j ∈ V. (5)

In existing channel access protocols, there are usually
several subchannels to be selected for utilization. For
example, the IEEE 802.11b physical layer [22] has 14
subchannels, 5MHz apart in frequency, all of which have
the same transmission capability. However, typically there
is only one single RF chain, and the peak constraint on
the instantaneous transmit power has to be satisfied for the
total combined transmission. We have the instantaneous
power constraint

∑

k

(
max
h,j

P(i,j)k
(h)

)
≤ Pm, ∀i, j ∈ V. (6)

Given power allocation P(i,j)k
(h), the achieved average

data rate given that a user has decided to transmit on link
(i, j)k is

R(i,j)k
=E

{
R(η(h))|User i transmits on (i, j)k

}

=
∫ ∞

H(i,j)k

R(η(h))Pr{H(i,j)k
= h|User i

transmits on (i, j)k}dh

=
∫ ∞

H(i,j)k

R(η(h))
A

B
dh,

(7)
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where

A =Pr{H(i,j)k
= h, User i transmits on (i, j)k}

=f(h)F |Ti|−1(h),
(8)

and

B =Pr{User i transmits on (i, j)k}
=

∫ ∞

H(i,j)k

Pr{H(i,j)k
= g, User i transmits on

(i, j)k}dg

=1− F |Ti|(H(i,j)k
).

(9)

Hence,

R(i,j)k
=

∫∞
H(i,j)k

R(η(h))dF |Ti|(h)

1− F |Ti|(H(i,j)k
)

, (10)

where η(h) =
hP(i,j)k

(h)

NoW/K is the received SNR, No is noise
spectral density, W is the total system bandwidth, and
R(η) is the instantaneous data rate when channel has SNR
η.

If channel capacity is achieved in AWGN channels †,
R(η) = W log2(1 + η). Assuming continuous-rate M-
QAM modulation and given the BER requirement, R(η)
can be expressed as R(η) = W log2(1 + 3η

−2 ln(5BER) )
according to [20]. It is easy to see that in both cases, R(η)
is strictly concave in η. In general, we assume that R(η)
is continuously differentiable with first order derivative
R
′
(η) positive and strictly decreasing in η.

C. Criterion for Cross-Layer Design

When optimizing multi-user networks, we have to take
both overall network throughput and fairness into con-
sideration. A very commonly discussed fairness criterion
is max-min fairness [21]. When max-min fairness is
achieved, the throughput of a certain link can not be
increased without simultaneously decreasing the through-
put of another link which already has smaller throughput.
Usually, max-min fairness just implies to equal sharing of
channel resources on each link, which compromises the
overall throughput of the wireless network a lot since dif-
ferent links usually have different transmission conditions.
Hence, we consider proportional fairness, the objective of
which is to maximize the product of throughput of all
links, or the geometric average [24]. As pointed out in
[25], a vector of throughputs T = (T1, T2, · · · , Tn) is
proportionally fair if it satisfies required constraints, and
for any other feasible vector T , the aggregate of propor-
tional changes is non-positive, i.e.

∑n
i=1

T i−Ti

Ti
≤ 0. Some

analysis has been given in [24] from a game-theoretic
standpoint and it is shown that a strategy achieving propor-
tional fairness satisfies certain axioms of fairness and is a
Nash arbitration strategy [26]. With proportional fairness,

†In slow fading channels, channel varies slightly within each packet.
With sufficiently long packet length, ideal coding can be applied to
achieve channel capacity

the network will be operated at a Pareto equilibrium,
which corresponds to the situation where no user can
improve its throughput without affecting at least one user
adversely.

Denote transmission control of the whole network as
C = {H,P}, where H is the set of predetermined channel
power gain thresholds and P is the set of power allocation
policies. With the constraints in (5) and (6), the optimal
configuration of the whole network, C∗ = {H∗,P∗},
that achieves proportional fairness among all subchannels
carrying traffic flows will be

C∗ = arg max
{H,P}

∑

(i,j)k∈E,j∈Ti

ln(T(i,j)k
), (11a)

subject to
∑

j∈Ti,k=1,...,K

1
|Ti|

∫ ∞

H(i,j)k

P(i,j)k
(h)dF |Ti|(h) ≤ Pa,

(11b)

and
∑

k

(
max
h,j

P(i,j)k
(h)

)
≤ Pm, (11c)

where throughput T(i,j)k
is given by (3). Denote utility

U(i,j)k
= ln(T(i,j)k

). Problem (11) aims to maximize
overall network utility subject to individual power limits.

IV. DECENTRALIZED OPTIMIZATION

In the previous section, we have discussed a criterion
for cross-layer design. The optimization of (11) depends
on the threshold configuration, H, power allocation, P ,
and modulation policy. The global optimization of the
problem is difficult and computationally expensive, and re-
quires complete network knowledge for each user. There-
fore, in this section, we find a suboptimal solution, which
only needs decentralized neighborhood information.

From (11), we have

C∗ =arg max
{H,P}

∑

(i,j)k∈E,j∈Ti

(
ln

(
p(i,j)k

(1− pjk
)

∏

a∈Nj ,a6=i

(1− pak
)
)

+ ln
(
R(i,j)k

))
.

(12)

(12) reveals two ways to improve the overall system
performance. One way is to reduce the probability of
collisions in the whole network, whose effect is captured
by the term p(i,j)k

(1−pjk
)
∏

a∈Nj ,a6=i(1−pak
). The other

is to allocate power properly so that the achieved data
rate of each individual user can be maximized. Hence,
we decompose it into two related problems, and find
a suboptimal transmission control policy. The solution
to find optimal MAC layer transmission control H∗ to
resolve collisions in the whole network while guaranteeing
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proportional fairness can be formulated by

H∗ =arg max
H

∑

(i,j)k∈E,j∈Ti

(
ln

(
p(i,j)k

(1− pjk
)

∏

a∈Nj ,a6=i

(1− pak
)
))

.

(13)

Given MAC transmission decision, in order to maximize
the mean physical layer throughput within power ca-
pability, the optimal power allocation P∗i of User i is
formulated by

P∗i = arg max
Pi

∑

j∈Ti,k

R(i,j)k
, (14a)

subject to (11b)
∑

j∈Ti,k=1,...,K

1
|Ti|

∫ ∞

H
∗
(i,j)k

P(i,j)k
(h)dF |Ti|(h) ≤ Pa,

(14b)

and (11c)
∑

k

(
max
h,j

P(i,j)k
(h)

)
≤ Pm, (14c)

where {H∗
(i,j)k

} is the solution of (13) and R(i,j)k
is given

by (10). Although problem (11) has been decomposed into
(13) and (14) to resolve network collisions and improve
individual transmission capability respectively, these two
problems are closely coupled through H∗.

A. MAC Layer Transmission Control

When optimizing the network with proportional fairness
in (13), all users are assumed to transmit at the same data
rate once the channel power gain is above a certain thresh-
old. Problem (13) turns out to be similar with the problem
of finding distributed access control strategy to achieve
proportional fairness in traditional Aloha networks [27]
and [28]. By applying techniques used in [27] and [28],
the optimal transmission probability is readily achieved,

p∗(i,j)k
=

1
|Si|+

∑
m∈Ni

|Sm| . (15)

Combining (1) and (15), Theorem 1 follows immediately,
and the proof is omitted.

Theorem 1: The optimal predetermined channel power
gain threshold for any link (i, j)k ∈ E where j ∈ Ti,
H
∗
(i,j)k

, as defined in (13), is given by

H
∗
(i,j)k

= F−1

[
(1− |Ti|

|Si|+
∑

m∈Ni
|Sm| )

1
|Ti|

]
. (16)

From threshold (16), the optimal threshold of User
i is independent of the receiver j but depends on the
neighborhood information of User i itself, including the
number of users receiving packets from User i, |Ti|,
the number of users sending packets to User i, |Si|,
and the total number of users sending packets to the

interfering neighbors of User i,
∑

m∈Ni
|Sm|. The first

two are local information while |Sm|′s,m ∈ Ni, is
information about interfering neighbors. The number of
flows each interfering neighbor receives, i.e. |Sm| for
all m ∈ Ni, can be obtained through broadcasting of
the interfering neighbor whenever this numbers changes.
Since this knowledge needs to be broadcast to notify the
interfering neighbors, we call it two-hop knowledge. The
broadcasting of this two-hop knowledge incurs only trivial
signalling overhead since only when either a traffic session
or the network topology varies will this broadcasting
be triggered. Besides, some form of two-hop knowledge
is typical in many protocols, like routing information
discovery in mobile ad hoc networks [29], [30]. Hence, it
can be easily obtained.

Consider User 7 in Figure 1. It is easy to see that
|T7| = 3, |S7| = 1, and the two-hop knowledge of interfer-
ing neighbors |S5| = 1, |S6| = 2, |S8| = 2, and |S9| = 2.
Hence, for all j ∈ T7 and k = 1, · · · ,K, H

∗
(7,j)k

=

F−1
[
(1− 3

1+7 )1/3
]

= F−1 (0.855). If the channel is

Rayleigh with average power gain ha, H
∗
(7,j)k

= 1.931ha.
Hence, since there are many traffic flows in the neighbor-
hood of User 7, it transmits only when the channel has
very good condition.

As we can see above, the optimal threshold can be
obtained through two-hop knowledge. In the following,
we consider two special applications.

1) Transmission Control with One-Hop Knowledge
To avoid signalling broadcast, assume no user has
two-hop knowledge, and it needs to be estimated to
get approximation of the optimal thresholds. Since
the transmission of each interfering neighbor j ∈ Ni

can be detected by User i, |Tj | is available. User i
can approximate |Si|+

∑
m∈Ni

|Sm|, the total num-
ber of received traffic flows within the interfering
range of User i, to be |Ti|+

∑
m∈Ni

|Tm|, the total
number of transmitted traffic flows User i can detect.
Hence, instead of (16), the transmission threshold
with one-hop knowledge, i.e. local knowledge, is

H
∗
(i,j)k

= F−1

[
(1− |Ti|

|Ti|+
∑

j∈Ni
|Tj | )

1
|Ti|

]
.

(17)
Since the approximation in (17) is not always accu-
rate, there might be some performance degradation.
Approximation error happens when there exists un-
detectable traffic flows that are sent either into or
out of the interfering range of User i.

2) Transmission Control for One-Hop Networks
Assume that all users are within the transmission
range of each other, i.e., this is a one-hop network.
A simple example is the uplink transmissions of
different users to the access point in wireless lan,
and at most one traffic flow within the network can
succeed in transmission in one transmission slot on

6



one subchannel. Denote n = |Si| +
∑

m∈Ni
|Sm|

for any User i, then n is the same for all users and
represents the total number of traffic flows in the
network. During any time slot on each subchannel,
at most one traffic flow within the network can
send data successfully. The transmission threshold
is given by

H
∗
(i,j)k

= F−1

[
(1− |Ti|

n
)

1
|Ti|

]
. (18)

If each user has only one traffic flow to send, i.e.
|Ti| = 1, the transmission threshold is

H
∗
(i,j)k

= F−1

[
(1− 1

n
)
]

, (19)

which is the same as the transmission control in
[8]. [8] has demonstrated that the total throughput
for such a system achieves a fraction, (1− 1

n )n−1,
of its counterpart’s throughput with an optimum
centralized scheduler. The throughput reduction is
due to the inherent contention in random access.

B. Physical Layer Optimization with Channel Inversion

Consider a simple transmitter adaptation technique,
channel inversion [31], which maintains a constant re-
ceived power level so that the signals can be reliably
received during each traffic session. Once the MAC de-
cides to transmit with channel power gain h, the transmit
power is directly given by Pt = Pr/h, where Pr is the
received power level. Different traffic flows may have
different received power levels, Pr, according to the power
allocation strategy. The reliable transmission data rate is
given by R(Pr). According to the assumption in Section
III-B, R(Pr) is strictly concave in Pr since the average
noise power is constant on each subchannel.

From (4), the average transmit power on link (i, j)k is

E{P(i,j)k
} =

1
|Ti|

∫ ∞

H(i,j)k

Pr(i,j)k

h
dF |Ti|(h). (20)

Hence, the instantaneous received power is

Pr(i,j)k
= |Ti|E{P(i,j)k

}
(∫ ∞

H(i,j)k

dF |Ti|(h)
h

)−1

.

(21)
Denote by Pri = {Pr(i,j)k

|(i, j)k ∈ E , j ∈ Ti} the set
of the received power configuration of User i. According
to (10), the average data rate is R(i,j)k

= E {R(η(h))} =
R(Pr(i,j)k

). The problem in (14) is equivalent to

P∗ri = arg max
Pri

∑

j∈Ti,k

R(Pr(i,j)k
), (22a)

subject to
∑

j∈Ti,k

1
|Ti|

∫ ∞

H
∗
(i,j)k

Pr(i,j)k

h
dF |Ti|(h) ≤ Pa, (22b)

and
∑

k

(
max

j

Pr(i,j)k

H
∗
(i,j)k

)
≤ Pm. (22c)

The above power allocation problem is solved by Theorem
2, which is proved in Appendix II.

Theorem 2: Assuming the strict concavity of the data
rate function R(Pr), (22) has unique globally optimal
reception power levels P ∗r(i,j)k

on any link (i, j)k ∈ E
where j ∈ Ti

P ∗r(i,j)k
= min

(
Pa

K

( ∫ ∞

H
∗
(i,j)k

1
h

dF |Ti|(h)
)−1

,
PmH

∗
(i,j)k

K

)
,

(23)

in which H
∗
(i,j)k

is determined by Theorem 1.
Whenever MAC decides to transmit, the physical layer

always execute the transmission. However, when H
∗
(i,j)k

is very small, (23) turns out to be very small and the
physical layer has extremely low throughput due to the
penalty of allowing transmission on deeply faded chan-
nels. Hence, H

∗
(i,j)k

should be further modified by the
physical layer to avoid transmitting on deeply faded chan-
nels. Observing (15), p∗(i,j)k

can be 1, 1
2 , 1

3 , etc.. Assuming
Rayleigh channel with average power gain ha and one
traffic flow is carried, the corresponding thresholds are
0, 0.69ha, 1.10ha, etc.. Hence, transmission on deeply
faded channels is possible only when p∗(i,j)k

= 1. Thus,
define Ho as

Ho = arg max
H

R(
Pa

K
∫∞

H
1
hf(h)dh

)(1− F (H)), (24)

which leads to the maximum physical layer throughput
when the physical layer is required to transmit under any
channel conditions. If H

∗
(i,j)k

determined by Theorem
1 is less than Ho, then substitute it with Ho. This
lowers p(i,j)k

slightly since the channel is not deeply
faded most of the time. The revision effectively improves
link performance but impacts trivially overall network
performance, and we do not need to further improve
the thresholds of other users to adapt to this change for
the sake of optimality in (13), which otherwise incurs
additional signalling overhead.

With channel inversion, the instantaneous transmit
power allocation P∗ is:

P ∗(i,j)k
(h) =

{
P∗r(i,j)k

h h ≥ H
∗
(i,j)k

0 otherwise
. (25)

C. Physical Layer Optimization with Adaptive Modula-
tion and Power Allocation

Consider ideal physical layer transmissions. Each user
can vary both the transmit power and rate to achieve
the best transmission performance. According to (10) and
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(14), the power allocation strategy can be formulated by

P∗i = arg max
Pi

∑

j∈Ti,k

∫∞
H
∗
(i,j)k

R(η(h))dF Ti(h)

(1− F Ti(H
∗
(i,j)k

))
(26a)

subject to (11b)
∑

j∈Ti,k

1
|Ti|

∫ ∞

H
∗
(i,j)k

P(i,j)k
(h)dF |Ti|(h) ≤ Pa, (26b)

and (11c)
∑

k

(
max
h,j

P(i,j)k
(h)

)
≤ Pm. (26c)

The optimal solution of (26) is given in Theorem 3, which
is proved in Appendix III.

Theorem 3: Assume the data rate function R(η) to be
continuously differentiable and the first order derivative
R
′
(η) is positive and strictly decreasing. For any link

(i, j)k ∈ E where j ∈ Ti, (26) has a unique globally opti-
mal power allocation given by: if Pm < Pa

1−F |Ti|(H∗
(i,j)k

)
,

P ∗(i,j)k
(h) = Pm

K for h ≥ H
∗
(i,j)k

; otherwise,

P ∗(i,j)k
(h) =





Pm

K ν∗ < R
′
(

hPm

noW

)
hK

noW ,

0 ν∗ ≥ R
′
(0) hK

noW ,

R
′−1

(
ν∗noW

hK

)
noW
Kh otherwise,

(27)

for h ≥ H
∗
(i,j)k

. R
′−1() is the inverse function of R

′
().

ν∗ ≥ 0 is uniquely determined by
∫ ∞

H
∗
(i,j)k

P ∗(i,j)k
(h)dF |Ti|(h) =

Pa

K
, (28)

where H
∗
(i,j)k

is given by Theorem 1.
Observing (27), when ν∗≥R

′
(0) hK

noW , the channel is
deeply faded and although the MAC layer decides to trans-
mit, the physical layer further optimizes the transmission
and decides not to transmit.

For example, assume the data rate function to be
R(η) = W

K ln(1 + η). The power allocation when Pm ≥
Pa

1−F |Ti|(H∗
(i,j)k

)
is given by

P ∗(i,j)k
(h) =





Pm

K
1

ν∗ − noW
Kh > Pm

K

0 1
h ≥ K

ν∗noW
1

ν∗ − noW
Kh otherwise

(29)

for h ≥ H
∗
(i,j)k

, which is similar to the well-known
water-filling power allocation scheme [32]–[34]. Since the
proposed power allocation scheme has maximum instanta-
neous power constraint, we call it capability-limited water
filling.

According to (27), power will be optimally distributed
over both time and all subchannels. Figure 2 illustrates
the capability-limited power allocation of a user that is
transmitting data to User 1 and 2 on a subchannel by
using (29), and the striped parts in the figure represent the
amount of power allocated. The power allocation during
100 transmission time slots is shown. We assume that
ν∗noW

K > H
∗
(i,j)k

here. According to the transmission
policy, the user always selects the destination with better
channel power gains. As indicated by “Period 1” in Figure

8
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Fig. 3. Random network topology.

2 there are no transmissions when subchannels of both
User 1 and 2 are deeply faded. In “Period 2” in Figure 2,
although the channel conditions are so good that higher
data rates can be achieved, the actual data rate is limited
by the instantaneous transmission capability Pm.

When ν∗noW
K < H

∗
(i,j)k

, since the MAC decides to
transmit only when h > H

∗
(i,j)k

, the physical layer will
always transmit when the MAC wants to transmit accord-
ing to (29). Assuming large Pm, the power allocation is
always 1

ν∗ − noW
Kh . Then according to (28), the water level

is
1
ν∗

=

noW
K

∫∞
H
∗
(i,j)k

1
hdF |Ti|(h) + Pa

K

1− F |Ti|(H
∗
(i,j)k

)
. (30)

We can always use (30) to approximate the water level
since with large probability, most transmissions will fall
within the normal working ranges of the transmitter.

V. SIMULATION RESULTS

In this section, we first demonstrate DOMRA per-
formance in a network with random topologies. Then
we further show how closely DOMRA performs to the
globally optimum solution.

A. Network Performance Improvement

Consider a network with random topologies and com-
pare the average performance of all simulation trials. In
each simulation trial, users are randomly dropped and
uniformly distributed in a square area with side length
one hundred meters. Each user has a transmission range
of forty meters and selects neighboring users randomly for
data transmission. Figure 3 illustrates a network topology
in one trial, where arrows indicate traffic flows and circles
transmission ranges of different users. Different schemes
will be implemented to provide detailed performance
comparisons.

1) Single-channel network: Assume that the net-
work operates with one channel. For simplicity, assume
Rayleigh fading channel and R(P ) = W ln(1 + hP

WN0
).

We will compare the performance of the proposed cross-
layer transmission policy with the channel-aware Aloha
in [8], and the optimal traditional Aloha in [27], which
does not consider cross-layer optimizations. For traditional
Aloha transmissions, in order to make the comparison
meaningful, the same average power constraint and in-
stantaneous power constraint are enforced. Since there
is no cooperation between MAC and the physical layer,
the physical layer assumes that it keeps on transmitting
except when the channel is deeply faded. In order to
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Fig. 4. Network aggregate utility comparison. Pm = 50dBm, Pa = 43dBm, W = 100Hz, and No = 0.001W/Hz.

satisfy power constraints, the transmission threshold is
chosen so that the average data rate is maximized, i.e.
H = arg maxH(1−F (H))R(Pr) subject to the instanta-
neous power constraint (6), and Pr is given by (21). The
threshold is found through linear search.

Figure 4 shows the aggregate utility comparison of the
whole network when the channel has different average
channel gains. The “TwoHop” curve represents the result
of DOMRA when each user has two-hop information of
the neighboring users while the “OneHop” curve repre-
sents the result when each user has only one-hop infor-
mation. As we can see, with only one-hop knowledge, the
system has slight performance degradation as compared
with the transmissions when two-hop knowledge is avail-
able. Curve “QIN” shows the performance of [8], which
assumes that each user has the knowledge of how many
users there are in the whole network. Curve “Traditional”
shows the result using the traditional optimal Aloha. As
shown in Figure 4, with the advantage of cross layer
design, the proposed scheme outperforms traditional op-
timal Aloha greatly. In addition, by exploiting the neigh-
borhood information of each user, the proposed method
also outperforms the existing channel-aware Aloha in [8].
This is due to the consideration of the inhomogeneous
traffic spatial distribution in the proposed scheme and the
channels are better utilized.

2) Multichannel network: Consider the same wire-
less network configurations as those in the single-
channel network scenario except that there are five sub-
channels. Besides implementing schemes in the single-

channel network scenario for multichannel environment,
we also run the CAMCRA proposed in [11]. During
each each transmission slot, CAMCRA chooses c sub-
channels with the c most significant gains, where c =
max

(
1, b subchannel number

user number c). Then the method in ( [8])
is applied on each subchannel given that each user knows
how many users are using the subchannel. Since the
number of users in each subchannel is a random variable,
it is proposed in [11] to use max

(
1, user number

subchannel number

)
as

an estimate. As shown in Figure 5, the CAMCRA in [11]
has slight performance improvement as compared with
the channel-aware Aloha in [8] because of exploitation
of multichannel diversity. However, these two schemes do
not perform good when the network has arbitrary spatial
traffic distribution. Our proposed DOMRA with either
two-hop or one-hop information significantly outperforms
these existing schemes due to exploitation of multiuser
diversity and proper adaptive transmission settings and
power allocations according to inhomogeneous traffic spa-
tial distribution in the network.

U 1 U 2 U 3

U 31

U 3n
Fig. 6. A simple network topology
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B. Suboptimality Gap

Problem (11) is decomposed into subproblems (13) and
(14) to obtain feasible suboptimal control policy. In order
to show the suboptimality gap, we exhaustively search
for the global optimum in (11), and run a simple network
topology to reduce search complexity. As shown in Figure
6, arrows indicate traffic flows. User 3 is sending traffic to
n receivers, who are all out of the transmission ranges of
Users 1 and 2. User 1 can communicate with 2, but not 3,
while User 2 can communicate with both. When n is zero,
the traffic distribution is symmetric in the network. The
larger the number n, the more asymmetric the traffic dis-
tribution is. We call n traffic asymmetry, and vary it from
0 to 8. Figure 7 compares network aggregate utility and
shows the suboptimality gap. While the global optimum
can only be obtained through floods of broadcast of com-
plete network knowledge, our decomposition technique
yields a feasible suboptimal decentralized solution, which
requires limited (two-hop knowledge case), or no (one-
hop knowledge case) signalling overhead. Besides, the
proposed scheme performs closely to the global optimum,
and even reaches the global optimum when the traffic is
symmetric.

VI. CONCLUSIONS AND FUTURE RESEARCH

We have proposed a joint physical-MAC layer opti-
mization policy for multichannel Aloha random access in
wireless networks in which all users are not necessarily
within the transmission range of each other and each user

may have packets to send to or receiver from different
users. The joint physical-MAC layer optimization policy
exploits decentralized CSI, and achieves multi-user diver-
sity through cross-layer design. System performance is
optimized while proportional fairness is obtained with the
consideration of the inhomogeneous characteristics of the
traffic spatial distribution. Simulation results show that the
proposed scheme significantly outperforms existing chan-
nel aware Aloha schemes. The generality of the design in
this paper will allow its applications in different types of
wireless networks to fully exploit the system capacity. The
scheme presented here is simple but gives guidelines for
decentralized cross-layer optimization in practical wire-
less networks. The methodology provided can be easily
adapted to improve the performance of different wireless
networks. For example, in networks based on 802.11
standards, besides using the backoff window technology,
the transmission of RTS to compete for channel access
can also be designed according to the proposed DOMRA
to further decrease the collision probability and allow
larger successful probability of users with better channel
power gain. In the future we will consider extensions that
take into accounts specific features of 802.11 and 802.16
based networks. More practical channel models will be
incorporated. Implementation issues regarding modulation
and coding policy will also be considered.
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APPENDIX I
PROOF OF TRANSMISSION PROBABILITY

Since in each transmission time slot, User i sends pack-
ets to User j on subchannel k only when this subchannel
has the best channel gain among all users in Ti, and
the subchannel power gain is above H(i,j)k

, we get the
following:

p(i,j)k
=Pr

{
h(i,j)k

= max
a∈Ti

(h(i,a)k
), h(i,j)k

≥ H(i,j)k

}

=Pr
{

h(i,j)k
= max

a∈Ti

(h(i,a)k
)
}
·

Pr
{

h(i,j)k
≥ H(i,j)k

∣∣∣∣h(i,j)k
= max

a∈Ti

(h(i,a)k
)
}

=
1
|Ti| Pr

{
max
a∈Ti

(h(i,a)k
) ≥ H(i,j)k

}

=
1
|Ti|

(
1−

∏

a∈Ti

Pr
(
h(i,a)k

< H(i,j)k

)
)

=
1
|Ti|

(
1− F |Ti|(H(i,j)k

)
)

APPENDIX II
PROOF OF THEOREM 2

According to (16), we can see that H
∗
(i,j)k

is independent of j and k. Hence,the first
constraint of (22) is

∑
j∈Ti,k=1,...,K Pr(i,j)k

≤
Pa|Ti|

( ∫∞
H
∗
(i,j)k

1
hdF |Ti|(h)

)−1
. Since data rate function

R() is assumed to be a strictly concave function,

∑
j∈Ti,k

R(Pr(i,j)k
) ≤ |Ti|KR(

∑
j∈Ti,k Pr(i,j)k

K|Ti| ). The
equation holds if and only if Pr(i,j)k

is the same
value for all j ∈ Ti and k. Hence, for optimal
solution, maxj

P∗r(i,j)k

H
∗
(i,j)k

is the same for all k = 1, ..., K,

and the second constraint of (22) is equivalent to

P ∗r(i,j)k
≤ PmH

∗
(i,j)k

K . Then, it is easy to see that when the
first constraint in (22) takes effect, the optimal solution
is the first term in (23), while when the second constraint
takes effect, the optimal solution is the second term
in (23). Hence, (23) satisfies both constraints, and the
objective value will be maximized when one constraint
takes effect while satisfying the other constraint.

APPENDIX III
PROOF OF THEOREM 3

According to the symmetry of all subchannels, we see
that maxh,j P(i,j)k

is the same for all subchannels. Hence,
constraint (26c) equals maxh,j P(i,j)k

(h) ≤ Pm

K , which is
the same as P(i,j)k

(h) ≤ Pm

K . According to (16), H
∗
(i,j)k

is independent of j and k. Problem (26) is equivalent to:

P∗i = arg min
Pi

−
∑

j∈Ti,k

∫ ∞

H
∗
(i,j)k

R

(
hP(i,j)k

(h)
noW/K

)
dF Ti(h)

subject to
∑

j∈Ti,k

∫ ∞

H
∗
(i,j)k

P(i,j)k
(h)dF |Ti|(h)− |Ti|Pa ≤ 0,

(III.31a)
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and

P(i,j)k
(h)− Pm

K
≤ 0. (III.31b)

Introducing Lagrange multipliers λ(i,j)k
(h), γ(i,j)k

(h) and
ν ≥ 0 for the three inequalities respectively, the Lagrange
function associated with problem (III.31) is:

L(Pi, λ(i,j)k
, γ(i,j)k

, ν)

= −
∑

j∈Ti,k

∫ ∞

H
∗
(i,j)k

R

(
ĥP(i,j)k

(ĥ)
noW/K

)
dF |Ti |(ĥ)+

∑

j∈Ti,k

λ(i,j)k
(h)(−P(i,j)k

(h))+

∑

j∈Ti,k

γ(i,j)k
(h)(P(i,j)k

(h)−Pm

K
)+

ν


 ∑

j∈Ti,k

∫ ∞

H
∗
(i,j)k

P(i,j)k
(ĥ)dF |Ti|(ĥ)− |Ti|Pa




=
∑

j∈Ti,k

∫ ∞

H
∗
(i,j)k

L(i,j)k
(ĥ)dF |Ti|(ĥ)−

∑

j∈Ti,k

γ(i,j)k
(h)

Pm

K

− ν|Ti|Pa,

where L(i,j)k
(ĥ) = −R

(
ĥP(i,j)k

(ĥ)

noW/K

)
+ νP(i,j)k

(ĥ) −
λ(i,j)k

(h)P(i,j)k
(h)/C + γ(i,j)k

(h)(P(i,j)k
(h))/C, in

which C = 1 − F |Ti|(H
∗
(i,j)k

). According to [35],
we obtain the following Karush-Kuhn-Tucker (KKT)
conditions for optimal power allocation when h ≥ H

∗
(i,j)k

:

∑

j∈Ti,k

∫ ∞

H
∗
(i,j)k

P ∗(i,j)k
(h)dF |Ti|(h)− |Ti|Pa ≤ 0, (III.32)

P ∗(i,j)k
(h)− Pm

K
≤ 0, (III.33)

λ∗(i,j)k
(h) ≥ 0, γ∗(i,j)k

(h) ≥ 0, and ν∗ ≥ 0, (III.34)

λ∗(i,j)k
(h)P ∗(i,j)k

(h) = 0, (III.35)

γ∗(i,j)k
(h)

(
P ∗(i,j)k

(h)− Pm

K

)
= 0, (III.36)

ν∗


 ∑

j∈Ti,k

∫ ∞

H
∗
(i,j)k

P ∗(i,j)k
(h)dF |Ti|(h)−|Ti|Pa


= 0,

(III.37)

and

∂L(i,j)k
(h)

∂P(i,j)k
(h)

∣∣∣∣∣
P∗(i,j)k

(h)

= −R
′(hP(i,j)k

(h)
noW/K

) hK

noW
+ ν∗ − λ∗(i,j)k

(h)/C+

γ∗(i,j)k
(h)/C = 0. (III.38)

1◦. When
∑

j∈Ti,k

∫ ∞

H
∗
(i,j)k

P ∗(i,j)k
(h)dF |Ti|(h)<|Ti|Pa, (III.39)

according to (III.37), ν∗ = 0. From (III.38), γ∗(i,j)k
(h) >

0. Hence, P ∗(i,j)k
(h) = Pm

K from (III.36). (III.39) equals
Pm < Pa

1−F |Ti|(H∗
(i,j)k

)
.

2◦. When
∑

j∈Ti,k

∫∞
H
∗
(i,j)k

P ∗(i,j)k
(h)dF |Ti|(h) = |Ti|Pa,

i.e. Pm ≥ Pa

1−F |Ti|(H∗
(i,j)k

)
,

a). if γ∗(i,j)k
(h) > 0, P ∗(i,j)k

(h) = Pm

K from (III.36),
and λ∗(i,j)k

(h) = 0 from (III.35). According to (III.38),

ν∗ < R
′
(

hPm

noW

)
hK

noW

b). if γ∗(i,j)k
(h) = 0, from (III.38),

ν∗ = R
′
(

hP∗(i,j)k
(h)

noW/K

)
hK

noW + λ∗(i,j)k
(h)/C ≥

R
′
(

hP∗(i,j)k
(h)

noW/K

)
hK

noW . According to the strictly
decreasing assumption of the first order derivative
of R(η), R

′
(

hP∗(i,j)k
(h)

noW/K

)
≤ R

′
(0), i.e.

ν∗ ≤ R
′
(0) hK

noW + λ∗(i,j)k
(h)/C, and equality holds

only when P ∗(i,j)k
(h) = 0. Hence, with (III.34) and

(III.35), if ν∗ ≥ R
′
(0) hK

noW , it is easy to see that
P ∗(i,j)k

(h) = 0. If ν∗ < R
′
(0) hK

noW , P ∗(i,j)k
(h) > 0,

λ∗(i,j)k
(h)=0, and R

′
(

hP∗(i,j)k
(h)

noW/K

)
hK

noW = ν∗. Then

P ∗(i,j)k
(h) = R

′−1
(

ν∗noW
hK

)
noW
Kh . Hence, when

h ≥ H
∗
(i,j)k

, we have

P ∗(i,j)k
(h)=





Pm

K ν∗<R
′
(

hPm

noW

)
hK

noW ,

0 ν∗≥R
′
(0) hK

noW ,

R
′−1

(
ν∗noW

hK

)
noW
Kh otherwise,

(III.40)

Observing that both H
∗
(i,j)k

and P ∗(i,j)k
(h) are indepen-

dent of j and k, substituting (III.40) into the condition∑
j∈Ti,k

∫∞
H
∗
(i,j)k

P ∗(i,j)k
(h)dF |Ti|(h) = |Ti|Pa, we get

∫ ∞

H
∗
(i,j)k

P ∗(i,j)k
(h)dF |Ti|(h) =

Pa

K
. (III.41)

Since P ∗(i,j)k
(h) is a piecewise-linear decreasing function

of ν∗ with breakpoints at R
′
(0) hK

noW and

R
′
(

hPm

noW

)
hK

noW , (III.41) has a unique solution of ν∗.
Theorem 3 is readily obtained from both 1◦ and 2◦. The

solution is globally optimal since for convex optimiza-
tions, KKT conditions are both necessary and sufficient
for a local minimum to be a global minimum. If, in
addition, the objective function is strictly convex, the
globally optimal solution is unique. It is easy to see
that in (III.31), given that the first order derivative R

′
(η)

is positive and strictly decreasing, the constraints are
convex, and the objective function is strictly convex of
P(i,j)k

(h), j ∈ Ti, k = 1, · · · ,K, and the unique global
optimality follows.
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